通信笔记2
功率信号频谱表达式: \[ C_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s(t) e^{-j2\pi nf_0 t} dt \] 能量信号频谱表达式: \[ \begin{aligned} S(f) = \int_{-\infty}^{\infty} s(t) e^{-j2\pi f t} dt \\ s(t) = \int_{-\infty}^{\infty} S(f) e^{j2\pi f t} df \end{aligned} \] 能量信号能量谱密度:
总能量: \[ E = \int_{-\infty}^{\infty} s^2(t) dt = \int_{-\infty}^{\infty} \left| S(f) \right|^2 df \] 能量谱密度: \[ \left| S(f) \right|^2 \]
功率信号功率谱密度:
能量: \[ E = \int_{-T/2}^{T/2} s_T^2(t) dt = \int_{-\infty}^{\infty} \left| S_T(f) \right|^2 df \] 功率谱密度: \[ \lim_{T->\infty} \frac{1}{T} \left| S_T(f) \right|^2 = P(f) \] 信号功率: \[ P = \int_{-\infty}^{\infty} P(f) df \] 若有周期性\(T_0\): \[ P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s^2(t) dt = \sum_{n = -\infty}^{\infty} \left| C_n \right|^2 \] \(C_n\)是傅里叶级数系数